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The problem of the interaction of shear shock waves in a plastically incompressible elas- 
toplastic medium with reinforcement is discussed. Within the framework of the theory of small 
elasticoplastic strains, the mathematical model of the medium assumes their additivity: eij = 
e p 

eij + eij (from left to right, respectively, the total, elastic, and plastic strains). The 

stress--strain state of the material is determined in the neighborhood of the interaction 
point, at which one can assume the fronts of the original waves ~, and E2 to be plane at a 
sufficiently great distance from the perturbation sources, forming an angle 0 < 2a < ~ (see 
Fig. i). The x,, x2, and x~ axes are orthogonal. All the desired quantities are assumed to 
be independent of x3; ahead of the fronts of the waves ~, and E2 the medium is in the free 
state: ~176 = eij(~ = uij~~ = 0 (oij , u i are, respectively, the components of the stress 

an~ displacement tensors, i, j = i, 2, 3). The numbers of the zones into which the space is 
divided by the wave fronts are denoted by the superscript in parentheses. The model of the 
medium postulates taking account of two reinforcement mechanisms [I]: kinematic and iso- 
tropic. Using the procedure of [2-4], first the elastic and then the elastoplastic self- 
similar solutions of the problem are constructed. In the process of interaction of the waves 
both dissipation-free regions of deformation of the material (elastic, neutral) and regions 
of plastic flow can be formed. In the dissipation-free regions the variation of the stresses 
and strains is determined by the elastic dependences, whereas in plastic regions one should 
make use of the equation of the loading surface and the associated law of plastic flow. We 
note that a similar problem of the interaction of irrotational shock waves in an elastoplas- 
tic space with reinforcement was solved in [5]. 

Without yet specifying the type of waves, let us consider the interaction of two shock 
fronts having the form of a step. This case is noteworthy in that it gives some ideas about 
the nature of the propagation of waves of a more general kind and an approximation for the 
initial instant of time which is necessary for solution of the general problem. It may turn 
out that the dissipation-free region fills the entire space as a result of interaction of the 
waves. In the coordinate system x = x, -- St, y = x2 the stress, velocity, and strain fields 
are then time-independent behind the fronts of the original waves, and one can assume the so- 
lution to be self-similar, i.e., one can assume that all the desired quantities depend only 
on ~ ~ cot ~ = xy -I, where ~ is the angle measured from the positive x-axis counterclockwise 
(S is the velocity of a moving coordinate system tied to the interaction point of the waves). 
As follows from Fig. i, 

S = G(sin ~)-1, ( 0 . 1 )  

where G is the propagation velocity of the original waves. 

Using the linear law of Hooke and Cauchy's formulas and setting u, = yu(~), u2 = yv(~), 
and u3 = yw(~), we obtain the following system of equations of motion (the prime denotes a 
derivative with respect to 6, ~, and ~ are the Lame parameters, and p is the density of the 
medium) : 

(~ + 2~ + ~ -- ~S2)u '' -- (~ + ~)~v" = O, 

(0.2) 
(~ + ~ ) ~ , ,  ((~ + 2~)~ ~ + ~ - -  pSDv"  = O, (~ + ~ - -  o S D w "  = O. 

The solution of this system is trivial everywhere 

u = a ~  i - b ,  v = c ~ q - d ,  w = l ~ q - / ,  ( 0 . 3 )  
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Fig. i 

here the determinant is different from zero (a, b, c, d, l, and f are constants). A nontriv- 
ial solution of the system (0.2) occurs upon the condition 

(pG~ -- ~)~(p~ -- (~ + 2~)) = 0, (0.4) 

where G is a new variable defined by the relationship 

G2(~ 2 + I) = S ~. (0.5) 

It follows from (0.4) that G 2 2 = (~ + 2~)0 -*, G2,3 = ~P-*, i.e., both irrotational and shear 
shock waves can propagate in the body. 

i. Elastic Solution. We shall discuss the case of the interaction of two shear shock 
waves propagating at an angle 2a with respect to each other~ Then relationship (0.i) takes 
the form S 2 sin2~ = ~p-*. If one sets G = G,, then we have ~ = • + k~ = • [((~ 
+ 2~)~-1)I/2sin ~] + k~, from (0.5), which determines the position of the irrotational shock 
waves. If one sets G = G2,3, then we have ~ =la + km from (0.5) -- the position of the 
shear shock waves. It follows from physical notions that k = i. Since Isin ~I~I, then 
I(2(I -- w)/(i -- 2v)) I/~ sinal~l, where ~ is the Poisson coefficient, whence 

0 < ~ ~ ~14. (i.i) 

We shall denote waves in the upper half-plane y > 0 by odd subscripts Z,, Za, and Zs, 
and in the lower half-plane y < 0 -- by even subscripts Z2, Z4, and Z~. Here Za and Z4 are 
irrotational, and the rest are shear waves; Z6 and Zs are a continuation, respectively, of 
Z~ and Zm into the left half-plane x < O; the numbers of the zones between the surfaces Z i 
(i = i, 2, ..., 6) are indicated in Fig~ io 

However, we shall show that actually the waves Zs and Z4 are absent in the solution de- 
termined by us. 

Let the intensity of Z~ be equal to Yz, and the intensity of Z2 be equal to Y2| then 
from the consistency condition of Hadamard for the tangential displacement velocity v T we 
have (in the plane x3 = O) 

[u~](o, t) = --G[u~,~](~ ~ = G?~, [v,](~ = - -~ [u~ ,~]  (~ = ~?~, 

where G ~ G~,~ is the propagation velocity of the original waves, n is the normal to the 
surface and [ ] is a discontinuity of the corresponding quantity. Along with y~ and 
y~ one should still specify v~ (:) and v~ (~) on Z~ and Z~. Then instead of y~, y~, 
v~(*) vm(~) one would specify the quantities V,, V~, 6z, and ~ for example, by the formu- 
las: ' V~cos~z --Gy~, V~cos~ --G?~, V~sin~= v~ ), V~sin~ v~ )' = = = . With the fact that the 
components of the unit normal vector to the surface Zz are equal to (sin+a, --cos ~) and those 
to the surface Z= are equal to (sin ~, cos ~) taken into account, the displacement velocities 
in regions 1 and 2 are of the form 

v~)=V~cos~cos=, r~)=V~cos~,sin~, r ~ ~  

v~)=VscosSscosa ~ v~)=--V~cosSssina, v~)=VssinS=. 

Since in  the moving coordinate  system vj =--S3uj/3x (j = 1, 2, 3). then s e t t i n g  

u~ 0 = .~x + b,y, u~j ) = c~x + d~y, u~ > = l~x + ],y,  (1.2) 
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on the basis of (0.3), we obtain (i ffi i, 2) 

ai = • sin c~, c~ = 03i sin =, It = (--l)i03~tanSi, 

Xi = '/i COS a ,  (Oi = ( - - l ) i - t ' / i  s in a .  (1.3) 

We h a v e  
l~ = (--t)~• cos a ,  d~ = (--1)~03~ cos a ;  ]i = - - ( o ~ t a n ~  COt ~. (1.4) 

from the condition of continuity of the displacements on Y x and Z~. Using (1.3) and (1.4), 
one can obtain the strains from the Cauchy formulas and the stresses from Hooke's law in 
zones 1 and 2 (not summing over i) 

o~ ) ~'/i sin 2a, _(i) ~'/i sin 2~, 0(i) 0, 
= o:~ = -- 3s = (i. 5) 

4 ~  ) ( _  ~ - (. 
---- t)  ~ ' / i c o s 2 a ,  o~i3)----l~'/isin~tan~h o . 2 3 = ( - - 1 ) i ~ y i c o s o s t a n ~ i ;  

e~ ~ = 0.5yisin2~z,  e$il ~ = - -0 .5 ' / i s i n2 r  e(~ = O, (1.6) 
�9 

~)  = ( -  ~)~'/~ c o s 2 ~ ,  d~ ) = o . n ' / ~ s ~ n ~ t ~ . ~ ,  4 ~  ) = ( -  ~) 0 , 5 ' / ~ o ~ n ~ .  

Adopting for i = 3, 4, 5 a structure for writing the coefficients just as in (1.3) and (I.4), 
we obtain from the condition of continuity of the displacements on Ea(~ = cot (~- ~)). 
Y~(~ = cot (n ~- ~)), Y~(~ ---- cot (~ -- r162 Y,~(~ = cot (,~ ~- a)) and the equating of the expres- 
sions for bs, da, and fa obtained on the one hand upon passing through r a and on the other 
hand upon passing through Za into the fifth zone 

2• COl: r == (Z 3 -}- • 0~ - -  cot fi) -~ (~1 -~ X2)(~cOt a -}- cot  fi), 

203~ cot a = (033 + 03,) ( co t  ~ - cot t~) + (03~ + 03~)(cot a + co~ p ) .  
(1.7) 

203~mn ~ cot ~ = (~3tan 63 -- 03~ tan 6~)(cot = -- cot fi) + (~i m n ~i --03~ tan~)(co~ = + co~ ~) 

It is natural to assume that the waves Za and Z4 cannot change the direction of the po- 
larization of the motion of the medium) they only intensify or weaken its intensity; there- 
fore we shall assume in the following that ~2 = ~ao 

It is well known that on irrotational shock waves [vT] = 0 (or [~,n] = 0) and on shear 
waves [Vn] = 0 (or [Un,n] = 0). At the same time uT, n = Uk,j~knj, and Un, n = Uk,jnknj, where 
T k are the components of the unit tangent vector to the surface of the wave. On Za we have: 
Z 3 : T ~ 3 ) = c o s ~ , T ~ ) = - - s i n ~ ,  n ? ) = s i n ~ ,  n P ' = c o s ~  ; on  Z 4 : T ~ 4 ) = e o s ~ ,  T ~ ' ) = s i n ~ ,  n ? ' = s i n ~ ,  n~4)=: 
--cos B; o n  Z s : z i ~ ) = c o s ~ i  T ~ 5 ) = - - s i n ~ ,  n i ~ ) = s i n = ,  n ~ a ) = c o s =  ; and'on 2 s : T i S > = c o s a ,  T~";'_-- sin e,  
n ~ = s i n = ,  n ~ " / = - - c o s =  . T h e n  w i t h  ( 1 . 2 ) - ( 1 o 4 )  t a k e n  i n t o  a c c o u n t  we o b t a i n  a f t e r  t r a n s f o r -  
m a t i o n s  
(• - • =or ~ = 031 - 03=, (• - • =or ~ = 03~ - 03~, (• - • = 03~ - 03~,(• - z~)~a~= = 03~ -- ~ 

The system of equations (1.7) and (1.8) has the solution: 

03 5 

?El = ~3~ ~2 ~--- ~ 4 ,  >~5 = }41 -F ~2~ 031 ~ 033, 0)2 = (04~ 

= 031 ,-}- 032, tan ~i~ = (031 tan 61 - -  03.z tan~2)(031 -~ 0)2) -1. 
(1.9) 

Determining the corresponding coefficients from (1.3) and (1.4), where now i = 3, 4, 5, one 
can obtain the components of the+displacement vector, the strain tensor, and the stress ten- 
sor in the neighborhood of the wave interaction point. At the same time one can assume i = 
i, 2, 3, 4 in the relationships (1.2), (1.5), and (1.6). Consequently, there are no surfaces 
Zs and Z~ in the wave packet, and the constraint (I.I) of this section is removed. The solu- 
tion in zone 5 is the superposition of the solutions in zones i and 2. We have for it 

u [a ---- 0.5 (Y1 -}- '/3) x sin 2a  - -  ('/1-4- ?2) Y cos2 a,  

u~ 5) = (?~ - -  ?2) x sin 2 a -}- 0.5 (?~ - -  '/1) Y sin 2a, u(a ~) = y (x sin a - -  y cos a) ,  '/---- '/ttan61 -}- ?~tan6:;  
(1.10) 

n = ((~ § ~) 73 + ~71) sin 2~, ~(5)2~ = ((~ + ~) '/~ -- ~'/0 sin 2~, 

(a (Y1 cos 2~ -t- 72), G<5) (~(5) ~72 s in2~ ,  ~ ix 13 ?ix cos ~;  33 = = -- ?V sina, _(5) U23 ~ -  

(I.ii) 
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~n ~(~) := 0,5 (7~ 4 7~) s i n  2(z, 

e ( 5 )  - -  0 , 5  ( ' ~ 1  c o s  2a  + 7~), 12 

(a) O, /~) = 0,~5 ( ~  "/1) s in  2a,  es3 = t~22 . - -  

o(~) 0,5 7 cos a .  ~(~) 0,5 7 s i n e ,  ~3 - -  g 1 3  = 

(1.12) 

Thus, the elastic solution obtained for the problem completes the proof of our assertion on 
the behavior of the surfaces Zs and Z4. In the following we will denote zones I and 3 by the 
number "i", zones 2 and 4 by the number "2", and zone 5 by the number "3". 

2. Elastoplastic Solution. We shall discuss the case of motion of the medium plane- 
polarized along xm with the goal of obtaining an anal~tic solution of the problem. To this 
end we set 6x = 62 = 7/2, whence Yx = Y2 = 0, Vx = vm (x), Vz = Vs (2) , and the quantity y is 
finite. Then only oxs, O2s, exsP, e2s p, Us, are different from zero| consequently, Sis = ois 
(i = l, 2), where Sis are the components of the stress deviator. 

We shall assume that the solution obtained in Sec. i is valid in zones I and 2. Mathe- 
matically, we write this condition in the form 

=S(m)S(m)  2 2 I(m) ia i3 : zmk, 

where m is the number of the zone, 0 < zm~l, k is the yield stress in the case of pure 
shear, and I m isa quantity which characterizes the intensity of the stresses. Dissipative 
regions can form in zone 3 only in the case in which the waves Es and Z~ become neutral [2, 
3]. Surfaces of weak discontinuity ax and a2 belonging to zone 3, on which the stresses, 
plastic strains, and displacement velocities are continuous and their first derivatives under- 
go discontinuity, should be the boundaries of these regions. Adopting this scheme for construc- 
ing the kinematics of the motion, we shall ascertain the condition under which it can be re- 
alized. Since yx tan 6x = --VxG -x and Ya tan 62 = --V2G -x, then using (1.5) and (i.II) we ob- 
tain 

l(~) = ~tpV~ = z~k ~, I(=) ~pV~ ~ 2 
= ( 2 . 1 )  

respectively, for zones I, 2, and 3. The material in the third zone can change into the plas- 
tic state upon the condition l(s)k-2~ i, whence 

(z 1 + z~) 2 ~ I .  ( 2 . 2 )  

Let this inequality be satisfied. The plastic fan in the third zone should be located be- 
tween the two neutral regions of this zone. 

Starting the construction of the elastoplastic solution from the half-plane y > 0 in the 
counterclockwise sense if one looks from the positive direction of the xa axis, we determine 
the position of the loading wave ~x = a--~x from the relationship 

q s i n  ~ = G s in  a x, ( 2 . 3 )  

where c t  is its propagation velocity, which is subject to determination. We shall find it 
from the following considerations. The basic system of equations which determines the con- 
tinuous solution of the problem in the dissipative region of zone 3 has the form 

oi3,i - -  OVa = O, oi3 - -  ~v3,i + 2pe~  = O, ( 2 . 4 )  

in the variables x i and t, where r~>O,  q~0 are the reinforcement parameters of the materl- 
" 77 " : - ~  - - ~ : ~  ~ " .  ~ , . . -  

t 

al and • : I |~e~e~ dt is the Odquist parameter; the dot and comma denote differentiation with 
o 

respect to the time and the coordinates, respectively. The shape of the loading surface is 
determined by multiplying by itself the third relationship of (2.4): (ois -- qeisP) (Ois -- 
qeimP) = (k + r~)2. The last relationship of (2.4) is obtained by differentiation of the 
loading surface with respect to the time. 

Having written (2.4) at the discontinuities and applied the geometrical and kinematic 
first-order consistency conditions, we obtain similarly to [3] 

%(3) ~2,-2(1 + a) -1, cl := G V t  - -  k i 3 - i /  (2.5) 
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where n~ ---- sina,; n~ ---- cos ~; a = (r -5 q)/2~ >/0; o~ ) are the still-unknown stresses in the 
third zone on the surface a, and in front of it. We make use of the following relationship 
on the wave Za for the determination of oia(a): 

-- G [(~a] O'a) = ~ [v3] (La) n~ a). (2.6) 

Finding V, from the first relationship of (2.1) and using (1.5), we obtain oo)~ = --z~ksin=, 
and ~$~) = z,kcos~, for the components of the stresses in the first zone. Substituting these 
values into (2.6), we determine the intensity of the wave Is from the condition l(a) = 
f~(3)G(3) k s 

{3 i3 ~--- 

[U3] (1'3) = - -  ~ t  I ( F ~ - p )  - 1 ,  t ,  = Z 1 COS 2(% ! V i - -  Z12 s i n  ~ 2 a .  

(2.7) 

The "--" sign in front of the root is not appropriate, since for z, = I we obtain that 75 is 
absent, which is impossible. Then we have from (2.6) 

g ( 3 ) _ _ _ k ( z ~ - s t ~ ) s i n g ,  (~2a = k ( z~ - -  t~) cos a. ( 2 . 8 )  ~a (a) 

In addition on the wave ~ = ~ and in front of it 

"(~s) -~k(z~-s tx) (V~-P)  -1, -~3"P(a) = • = 0. ( 2 . 9 )  

Thus substituting (2.8) into (2.5), we obtain from (2.3) a transcendental equation which de- 
termines the position of the wave u~ for different values of z, and u'- 

z~ cos (o~ -5 (z,) - -  t, cos (~ - -  ~ )  ---- I - -  sin ~ ~ (sin (z) -'~. ( 2 . 1 0 )  

If the construction of the elastoplastic solution would begin from the half-plane y < 0 
in the clockwise sense, then proceeding similarly to the preceding discussion, we would ob- 
tain the following relationships: ~(~) --zoksina, ~(2)=--z,kcosa, instead of (2.7) u13 =~ _ 23 . 

[Va] (~,a)_ kt~( ~f~-p) -~, t 2 = z s c o s 2 ( z  + V t - z ~ s i n 2 2 a ,  (2.11) 

The "+" sign is chosen in the expression for t2 for the very same reasons as in (2.7). 

On the loading wave 
through E6) 

~2 = ~-{- a2 and in front of it in the third zone (upon passing 

o (3)13 = - - k ( z ~ + t 2 ) s i n a  , o ~  ) ~ k ( t ~ - z ~ ) c o s a ;  ( 2 . 1 2 )  

~.~) = k ( z 2 - s t , , ) ( ] / ~ - p ) - ,  ' ~'(~) = • = 0. ( 2 . 1 3 )  

would occur. 

In order to obtain the solution in zone 3, it is necessary to integrate the system of 
equations (2.4), having written it in advance in the variable with the boundary conditions 
(2.8) and (2.9) on the wave ~,. The system of ordinary differential equations will take the 
form 

l ! t I ~t 

( ~ l a - - o 2 a c t g ~ )  s i n a  -5 ] /~-pv3 = 0, a , a - 5  ] / '~ 'p v a s i n =  -5 2~ela = 0 ,  
p ~' p' 

a ~ 8  - -  ] / '~ 'pv~ sin a . c t g  T -~ 2~e2a ---- O, Ke~3 --  Zta• - -  O; E~3E~3 - -  KK'  = O, ( 2 . 1 4 )  

where Y fa=oia--qe{a; and K = k+r• r• = K' (i---- i, 2). We have six equations with the six 
unknowns 6~3, e,~, v 3, • . These equations give the trivial solution 

t v pr pV t ~ ,y/ 
~I~ = ~a = e,3 = e~3 = va = 0, (2.15) 

which determines the neutral state of the medium in zone 3. For this state we have the val- 
ues (2.8) and (2.9) or (2.12) and (2.13) (z, -- z2). A nontrivial (plastic) solution of the 
system (2.14) is possible upon the condition 

K2(a sin ~ (z(sin r _ ( t  q- a)) -5 sin%z(Ela cot q) -5 Y~8) ~ ---- 0. ( 2 . 1 6 )  

Satisfying the equation of the loading surface by the substitution 

Y18 = K cos ~2, Y~a = K sin~p, ( 2 . 1 7 )  
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we transform the relationship (2.16) to the form 

cos (~ - -  ~) = ((sin 2 ~ / s in  2 ~)(1 ~ a) --  a)V 2 -~-- ~(~) .  ( 2 . 1 8 )  

This relationship determines ~ as a function ~. We note that upon substitution of (2.17) in- 
to (2.14) the latter equation is satisfied identically. 

Solving the remaining equations, we obtain 

K = C exp [b ~ , '  tg ( ,  -- ~) d~], (2.19) 
k ~1 

where ~'= I- q'(l- ~2)-V~; b- r(r q-q q-2~)-~; and C is an integration constant, which is de- 
termined from the condition of continuity of the value of (2.19) at ~ = ~x, whence C = k 
(we shall assume that $--~ ~= +__n/2). Finally, (2.19) can be represented in the form 

K----k(Th/~l)  b e x p  b t--~-~(q~) ~t/~ ] ( 2 . 2 0 )  

where ~ = ~(~) 

The proof of the impossibility of the formation in a class of bounded solutions of a 
plastic shock wave on which [e~l~=0 ' can be carried out similarly to [3]; therefore we shall 
not dwell on it. 

The condition that the. energy dissipation rate be positive in the region which is plas- 
p tically deformed, i.e., aiseis>O, is equivalent to the two inequalities: ~ise~<0 for 

y > 0 and Giae~>0 for y < 0. Each of these inequalities should te taken into account in 
connection with specific calculations. In the particular case of an ideally plastic medium 
the indicated inequalities change into the following~ • for y > 0 and ~'>0 for 
y < 0~ 

Then 

Using (2.20), one can obtain 

• = K(r %- q -l- 2 t t ) - l t a n ( r  - -  q~) 'r  

e~s = ~ r  cos Cd~ -[- Cts, eva = I r  s in ~pd~ -{- C~3, 
~1 CPl 

(2.21) 

( 2 . 2 2 )  

follows from the fourth and fifth equations of (2.14) and Cxa = C2a = 0, since exaP = e2aP = 
0 for ~= ql. 

We obtain from (2.17) the stress components 

aas ~ qe~a + K c o s % G ~ s  = qe~ + Ks in% ( 2 . 2 3 )  

and from the first three equations of (2.14) an expression for the displacement velocity 

r 

7' 3 = 2G sin c,, 'J' 
sin q) sin (~, - -  ~) 
(sin~q~ _ sin)a) z 'd(~ ~- C 3. 

(2.24) 

The constant Ca is determined from the condition that for ~ = (Pl the relationship (2.24)is 
equal to (2.9), whence 

C3 = k(zl -~ tt)(y~tp)-t (2.25) 

We shall determine the position of the unloading wave ~2 from the condition of continu- 
ity of the stresses for �9 = T2. Thus equating (2.23) to (2.12), we have 

cos ~ ~ --(z2 t2) sin ~, sin ~ = ( t 2 - - z ~ ) c o s  ~. ( 2 . 2 6 )  

with the second relationship of (2.13) taken into account. By adding here the relationship 
(2.18) in which ~ has been substituted in place of q~, we obtain 
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cos (~ -- ~) = ~(=2), (2.27) 

and ~ = ~(F~) in (2.26) and (2.27). Multiplying the first equation of (2.26) by cos a2 and 
the second one by sin am and adding them, we obtain with (2.27) taken into account a tran~ 
scendental equation for the determination of a= for different values of z2 and a: 

~(~2) + t~ sin (~ + ~ )  + z2 cos 2= sin (~ - ~2) = o. ( 2 . 28 )  

We note that when calculating a, from (2.10) and a, from (2.28) one should take only those 
values which belong to the sector ZsZ~, Having determined the position of the wave a= from 
the formula (2.28), we find its propagation velocity c2 from a relationship similar to (2.3). 
The equality of (2.24) with ~ = ~ to the first expression of (2.13) serves as the criterion 
for the correctness of the numerical calculations for a2. The problem has been solved. 
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ELASTIC STRESSES NEAR JOINTS OF BOUNDARIES OF CRYSTALLITES 

SUBJECTED TO SELF-DISTORTIONS 

Sh. Kh. Khannanov UDC 539.4 

i. The strength and plasticity of solids depends to a large extent on their superatomic 
structure. For polycrystalline materials, these important structural elements include crys- 
tallites (grains), crystallite boundaries, and joints of crystallite boundaries (JCB). Re- 
cently, a number of investigators established that JCB (or joints of boundaries of fragments) 
can be locations for generation of microcraeks both with active deformation [i, 2] and in the 
creep regime [3, 4]. The concentration of thermoelastic stresses near JCB often causes in- 
formation of microscopic cracks in ceramic materials [5]. Elastic stresses, arising near 
JCB, play an important role in recrystallization processes [4] and superplastic deformation 
[6]. 

The concentration of elastic stresses near JCB could be a result of several factors: 
elastic inhomogeneity (or anisotropy) of the material, high-temperature slipping along crys- 
tallite boundaries and, finally, self-distortion of crystallites. Stresses near sharp elas- 
tic inhomogeneities were examined in [7]. The results in [8] permit estimating the elastic 
stresses related to slipping along intersecting crystallite boundaries. In this work, we ex- 
amine the problem of finding the distribution of elastic stresses near JCB in the third case, 
when the joining r undergo self-distortions. In this case, self-distortions are 
taken to mean any (plastic, thermal, magnetostrictive, etc.) distortions of crystallites of 
a nonelastic nature. It is convenient to calculate the stresses by methods of the continuum 
theory of dislocations and disclinations [9-11]. Internal elastic stresses can be repre- 
sented as a superposition of fields of elastic stresses of distributed dislocations. 

2. Let us examine n wedge-shaped crystallites with planar boundaries OP(m) (m = i, 
2 o.o n), joining along the z axis of a Cartesian coordinate system x, y, z (Fig. I). The z 
axis is perpendicular to the plane of the figure. We shall assume that the cry stallites are 
infinite along the z axis and are subjected to homogeneous self distortion 8ik (m), where the 
index m corresponds to the number of the crystallite. In the general case, the distortions 
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